Nuitka is a Python compiler written in Python. It's fully compatible with Python 2.6, 2.7, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, and 3.11. You feed it your Python app, it does a lot of clever things, and spits out an executable or extension module.
Nuitka User Manual
Overview
This document is the recommended first read if you are interested in using Nuitka, understand its use cases, check what you can expect, license, requirements, credits, etc.
Nuitka is the Python compiler. It is written in Python. It is a seamless replacement or extension to the Python interpreter and compiles every construct that CPython 2.6, 2.7, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11 have, when itself run with that Python version.
It then executes uncompiled code and compiled code together in an extremely compatible manner.
You can use all Python library modules and all extension modules freely.
Nuitka translates the Python modules into a C level program that then
uses libpython
and static C files of its own to execute in the same
way as CPython does.
All optimization is aimed at avoiding overhead, where it's unnecessary. None is aimed at removing compatibility, although slight improvements will occasionally be done, where not every bug of standard Python is emulated, e.g. more complete error messages are given, but there is a full compatibility mode to disable even that.
Requirements
C Compiler
You need a C compiler with support for C11 or alternatively a C++ compiler for C++03 [1].
Currently, this means, you need to use one of these compilers:
- The MinGW64 C11 compiler, on Windows, must be based on gcc 11.2 or higher. It will be automatically downloaded if no usable C compiler is found, which is the recommended way of installing it, as Nuitka will also upgrade it for you.
- Visual Studio 2022 or higher on Windows [2], older versions will work, but only supported for commercial users. Configure to use the English language pack for best results (Nuitka filters away garbage outputs, but only for English language). It will be used by default if installed.
- On all other platforms, the
gcc
compiler of at least version 5.1, and below that theg++
compiler of at least version 4.4 as an alternative. - The
clang
compiler on macOS X and most FreeBSD architectures. - On Windows, the
clang-cl
compiler on Windows can be used if provided by the Visual Studio installer.
[1] | Support for this C11 is given with gcc 5.x or higher or any clang version. The MSVC compiler doesn't do it yet. But as a workaround, as the C++03 language standard is significantly overlapping with C11, it is then used instead where the C compiler is too old. Nuitka used to require a C++ compiler in the past, but it changed. |
[2] | Download for free from https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx (the community editions work just fine). The latest version is recommended, but not required. On the other hand, there is no need to except to support pre-Windows 10 versions, and they might work for you, but support of these configurations is only available to commercial users. |
Python
Python Version 2.6, 2.7 or 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11 are supported. If at any moment, there is a stable Python release that is not in this list, rest assured it is being worked on and will be added.
Important
For Python 3.4 and only that version, we need other Python version as a compile time dependency.
Nuitka itself is fully compatible with all listed versions, but Scons as an internally used tool is not.
For these versions, you need a Python2 or Python 3.5 or higher installed as well, but only during the compile time. That is for use with Scons (which orchestrates the C compilation), which does not support the same Python versions as Nuitka.
In addition, on Windows, Python2 cannot be used because clcache
does not work with it, there a Python 3.5 or higher needs to be
installed.
Nuitka finds these needed Python versions (e.g. on Windows via registry) and you shouldn't notice it as long as they are installed.
Increasingly, other functionality is available when another Python
has a certain package installed. For example, onefile compression
will work for a Python 2.x when another Python is found that has the
zstandard
package installed.
Moving binaries to other machines
The created binaries can be made executable independent of the Python
installation, with --standalone
and --onefile
options.
Binary filename suffix
The created binaries have an .exe
suffix on Windows. On other
platforms they have no suffix for standalone mode, or .bin
suffix, that you are free to remove or change, or specify with the
-o
option.
The suffix for acceleration mode is added just to be sure that the original script name and the binary name do not ever collide, so we can safely overwrite the binary without destroying the original source file.
It has to be CPython, Anaconda Python, or Homebrew
You need the standard Python implementation, called "CPython", to execute Nuitka because it is closely tied to implementation details of it.
It cannot be from the Windows app store
It is known that Windows app store Python definitely does not work, it's checked against.
It cannot be pyenv on macOS
It is known that macOS "pyenv" does not work. Use Homebrew instead for self compiled Python installations. But note that standalone mode will be worse on these platforms and not be as backward compatible with older macOS versions.
Operating System
Supported Operating Systems: Linux, FreeBSD, NetBSD, macOS X, and Windows (32 bits/64 bits/ARM).
Others will work as well. The portability is expected to be generally good, but the e.g. Nuitka's internal Scons usage may have to be adapted or need flags passed. Make sure to match Python and C compiler architecture, or else you will get cryptic error messages.
Architecture
Supported Architectures are x86, x86_64 (amd64), and arm, likely many, many more.
Other architectures are expected to also work, out of the box, as Nuitka is generally not using any hardware specifics. These are just the ones tested and known to be good. Feedback is welcome. Generally, the architectures that Debian supports can be considered good and tested, too.
Usage
Command Line
The recommended way of executing Nuitka is <the_right_python> -m
nuitka
to be absolutely certain which Python interpreter you are
using, so it is easier to match with what Nuitka has.
The next best way of executing Nuitka bare that is from a source
checkout or archive, with no environment variable changes, most
noteworthy, you do not have to mess with PYTHONPATH
at all for
Nuitka. You just execute the nuitka
and nuitka-run
scripts
directly without any changes to the environment. You may want to add the
bin
directory to your PATH
for your convenience, but that step
is optional.
Moreover, if you want to execute with the right interpreter, in that
case, be sure to execute <the_right_python> bin/nuitka
and be good.
Pick the right Interpreter
If you encounter a SyntaxError
you absolutely most certainly have
picked the wrong interpreter for the program you are compiling.
Nuitka has a --help
option to output what it can do:
nuitka --help
The nuitka-run
command is the same as nuitka
, but with a
different default. It tries to compile and directly execute a Python
script:
nuitka-run --help
This option that is different is --run
, and passing on arguments
after the first non-option to the created binary, so it is somewhat more
similar to what plain python
will do.
Installation
For most systems, there will be packages on the download page of Nuitka. But you can also
install it from source code as described above, but also like any other
Python program it can be installed via the normal python setup.py
install
routine.
License
Nuitka is licensed under the Apache License, Version 2.0; you may not use it except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
Tutorial Setup and build on Windows
This is basic steps if you have nothing installed, of course if you have any of the parts, just skip it.
Setup
Install Python
- Download and install Python from https://www.python.org/downloads/windows
- Select one of
Windows x86-64 web-based installer
(64 bits Python, recommended) orx86 executable
(32 bits Python) installer. - Verify it's working using command
python --version
.
Install Nuitka
python -m pip install nuitka
- Verify using command
python -m nuitka --version
Write some code and test
Create a folder for the Python code
mkdir
HelloWorld- make a python file named hello.py
def talk(message):
return "Talk " + message
def main():
print(talk("Hello World"))
if __name__ == "__main__":
main()
Test your program
Do as you normally would. Running Nuitka on code that works incorrectly is not easier to debug.
python hello.py
Build it using
python -m nuitka hello.py
Note
This will prompt you to download a C caching tool (to speed up
repeated compilation of generated C code) and a MinGW64 based C
compiler, unless you have a suitable MSVC installed. Say yes
to
both those questions.
Run it
Execute the hello.exe
created near hello.py
.
Distribute
To distribute, build with --standalone
option, which will not output
a single executable, but a whole folder. Copy the resulting
hello.dist
folder to the other machine and run it.
You may also try --onefile
which does create a single file, but make
sure that the mere standalone is working, before turning to it, as it
will make the debugging only harder, e.g. in case of missing data files.
Use Cases
Use Case 1 - Program compilation with all modules embedded
If you want to compile a whole program recursively, and not only the single file that is the main program, do it like this:
python -m nuitka --follow-imports program.py
Note
There are more fine-grained controls than --follow-imports
available. Consider the output of nuitka --help
. Including fewer
modules into the compilation, but instead using normal Python for it,
will make it faster to compile.
In case you have a source directory with dynamically loaded files, i.e.
one which cannot be found by recursing after normal import statements
via the PYTHONPATH
(which would be the recommended way), you can
always require that a given directory shall also be included in the
executable:
python -m nuitka --follow-imports --include-plugin-directory=plugin_dir program.py
Note
If you don't do any dynamic imports, simply setting your
PYTHONPATH
at compilation time is what you should do.
Use --include-plugin-directory
only if you make __import__()
calls that Nuitka cannot predict, and that come from a directory, for
everything from your Python installation, use --include-module
or
--include-package
.
Note
The resulting filename will be program.exe
on Windows,
program.bin
on other platforms, but --output-filename
allows
changing that.
Note
The resulting binary still depends on CPython and used C extension modules being installed.
If you want to be able to copy it to another machine, use
--standalone
and copy the created program.dist
directory and
execute the program.exe
(Windows) or program
(other
platforms) put inside.
Use Case 2 - Extension Module compilation
If you want to compile a single extension module, all you have to do is this:
python -m nuitka --module some_module.py
The resulting file some_module.so
can then be used instead of
some_module.py
.
Important
The filename of the produced extension module must not be changed as
Python insists on a module name derived function as an entry point,
in this case PyInit_some_module
and renaming the file will not
change that. Match the filename of the source code to what the binary
name should be.
Note
If both the extension module and the source code of it are in the same directory, the extension module is loaded. Changes to the source code only have effect once you recompile.
Note
The option --follow-import-to
works as well, but the included
modules will only become importable after you imported the
some_module
name. If these kinds of imports are invisible to
Nuitka, e.g. dynamically created, you can use --include-module
or
--include-package
in that case, but for static imports it should
not be needed.
Note
An extension module can never include other extension modules. You will have to create a wheel for this to be doable.
Note
The resulting extension module can only be loaded into a CPython of the same version and doesn't include other extension modules.
Use Case 3 - Package compilation
If you need to compile a whole package and embed all modules, that is also feasible, use Nuitka like this:
python -m nuitka --module some_package --include-package=some_package
Note
The inclusion of the package contents needs to be provided manually;
otherwise, the package is mostly empty. You can be more specific if
you like, and only include part of it, or exclude part of it, e.g.
with --nofollow-import-to='*.tests'
you would not include the
unused test part of your code.
Note
Data files located inside the package will not be embedded by this process, you need to copy them yourself with this approach. Alternatively, you can use the file embedding of Nuitka commercial.
Use Case 4 - Program Distribution
For distribution to other systems, there is the standalone mode, which
produces a folder for which you can specify --standalone
.
python -m nuitka --standalone program.py
Following all imports is default in this mode. You can selectively
exclude modules by specifically saying --nofollow-import-to
, but
then an ImportError
will be raised when import of it is attempted at
program run time. This may cause different behavior, but it may also
improve your compile time if done wisely.
For data files to be included, use the option
--include-data-files=<source>=<target>
where the source is a file
system path, but the target has to be specified relative. For the
standalone mode, you can also copy them manually, but this can do extra
checks, and for the onefile mode, there is no manual copying possible.
To copy some or all file in a directory, use the option
--include-data-files=/etc/*.txt=etc/
where you get to specify shell
patterns for the files, and a subdirectory where to put them, indicated
by the trailing slash.
To copy a whole folder with all files, you can use
--include-data-dir=/path/to/images=images
which will copy all files
including a potential subdirectory structure. You cannot filter here,
i.e. if you want only a partial copy, remove the files beforehand.
For package data, there is a better way, using
--include-package-data
, which detects data files of packages
automatically and copies them over. It even accepts patterns in a shell
style. It spares you the need to find the package directory yourself and
should be preferred whenever available.
With data files, you are largely on your own. Nuitka keeps track of ones that are needed by popular packages, but it might be incomplete. Raise issues if you encounter something in these.
When that is working, you can use the onefile mode if you so desire.
python -m nuitka --onefile program.py
This will create a single binary, that extracts itself on the target, before running the program. But notice, that accessing files relative to your program is impacted, make sure to read the section Onefile: Finding files as well.
# Create a binary that unpacks into a temporary folder
python -m nuitka --onefile program.py
Note
There are more platform-specific options, e.g. related to icons,
splash screen, and version information, consider the --help
output for the details of these and check the section Tweaks.
For the unpacking, by default a unique user temporary path one is used,
and then deleted, however this default
--onefile-tempdir-spec="%TEMP%/onefile_%PID%_%TIME%"
can be
overridden with a path specification that is using then using a cached
path, avoiding repeated unpacking, e.g. with
--onefile-tempdir-spec="%CACHE_DIR%/%COMPANY%/%PRODUCT%/%VERSION%"
which uses version information, and user-specific cache directory.
Note
Using cached paths will be relevant, e.g. when Windows Firewall comes into play because otherwise, the binary will be a different one to it each time it is run.
Currently, these expanded tokens are available:
Token | What this Expands to | Example |
---|---|---|
%TEMP% | User temporary file directory | C:\Users\...\AppData\Locals\Temp |
%PID% | Process ID | 2772 |
%TIME% | Time in seconds since the epoch. | 1299852985 |
%PROGRAM% | Full program run-time filename of executable. | C:\SomeWhere\YourOnefile.exe |
%PROGRAM_BASE% | No-suffix of run-time filename of executable. | C:\SomeWhere\YourOnefile |
%CACHE_DIR% | Cache directory for the user. | C:\Users\SomeBody\AppData\Local |
%COMPANY% | Value given as --company-name |
YourCompanyName |
%PRODUCT% | Value given as --product-name |
YourProductName |
%VERSION% | Combination of --file-version & --product-version |
3.0.0.0-1.0.0.0 |
%HOME% | Home directory for the user. | /home/somebody |
%NONE% | When provided for file outputs, None is used |
see notice below |
%NULL% | When provided for file outputs, os.devnull is used |
see notice below |
Important
It is your responsibility to make the path provided unique, on Windows a running program will be locked, and while using a fixed folder name is possible, it can cause locking issues in that case, where the program gets restarted.
Usually, you need to use %TIME%
or at least %PID%
to make a
path unique, and this is mainly intended for use cases, where e.g.
you want things to reside in a place you choose or abide your naming
conventions.
Important
For disabling output and stderr with --force-stdout-spec
and
--force-stderr-spec
the values %NONE%
and %NULL%
achieve
it, but with different effect. With %NONE%
, the corresponding
handle becomes None
. As a result, e.g. sys.stdout
will be
None
, which is different from %NULL%
where it will be backed
by a file pointing to os.devnull
, i.e. you can write to it.
With %NONE%
, you may get RuntimeError: lost sys.stdout
in
case it does get used; with %NULL%
that never happens. However,
some libraries handle this as input for their logging mechanism, and
on Windows this is how you are compatible with pythonw.exe
which
is behaving like %NONE%
.
Use Case 5 - Setuptools Wheels
If you have a setup.py
, setup.cfg
or pyproject.toml
driven
creation of wheels for your software in place, putting Nuitka to use is
extremely easy.
Let's start with the most common setuptools
approach, you can,
having Nuitka installed of course, simply execute the target
bdist_nuitka
rather than the bdist_wheel
. It takes all the
options and allows you to specify some more, that are specific to
Nuitka.
# For setup.py if you don't use other build systems:
setup(
# Data files are to be handled by setuptools and not Nuitka
package_data={"some_package": ["some_file.txt"]},
...,
# This is to pass Nuitka options.
command_options={
'nuitka': {
# boolean option, e.g. if you cared for C compilation commands
'--show-scons': True,
# options without value, e.g. enforce using Clang
'--clang': None,
# options with single values, e.g. enable a plugin of Nuitka
'--enable-plugin': "pyside2",
# options with several values, e.g. avoiding including modules
'--nofollow-import-to' : ["*.tests", "*.distutils"],
},
},
)
# For setup.py with other build systems:
# The tuple nature of the arguments is required by the dark nature of
# "setuptools" and plugins to it, that insist on full compatibility,
# e.g. "setuptools_rust"
setup(
# Data files are to be handled by setuptools and not Nuitka
package_data={"some_package": ["some_file.txt"]},
...,
# This is to pass Nuitka options.
...,
command_options={
'nuitka': {
# boolean option, e.g. if you cared for C compilation commands
'--show-scons': ("setup.py", True),
# options without value, e.g. enforce using Clang
'--clang': ("setup.py", None),
# options with single values, e.g. enable a plugin of Nuitka
'--enable-plugin': ("setup.py", "pyside2"),
# options with several values, e.g. avoiding including modules
'--nofollow-import-to' : ("setup.py", ["*.tests", "*.distutils"]),
}
},
)
If for some reason, you cannot or do not want to change the target, you
can add this to your setup.py
.
# For setup.py
setup(
...,
build_with_nuitka=True
)
Note
To temporarily disable the compilation, you could the remove above
line, or edit the value to False
by or take its value from an
environment variable if you so choose, e.g.
bool(os.environ.get("USE_NUITKA", "True"))
. This is up to you.
Or you could put it in your setup.cfg
[metadata]
build_with_nuitka = True
And last, but not least, Nuitka also supports the new build
meta, so
when you have a pyproject.toml
already, simple replace or add this
value:
[build-system]
requires = ["setuptools>=42", "wheel", "nuitka", "toml"]
build-backend = "nuitka.distutils.Build"
# Data files are to be handled by setuptools and not Nuitka
[tool.setuptools.package-data]
some_package = ['data_file.txt']
[tool.nuitka]
# These are not recommended, but they make it obvious to have effect.
# boolean option, e.g. if you cared for C compilation commands, leading
# dashes are omitted
show-scons = true
# options with single values, e.g. enable a plugin of Nuitka
enable-plugin = pyside2
# options with several values, e.g. avoiding including modules, accepts
# list argument.
nofollow-import-to = ["*.tests", "*.distutils"]
Note
For the nuitka
requirement above absolute paths like
C:\Users\...\Nuitka
will also work on Linux, use an absolute path
with two leading slashes, e.g. //home/.../Nuitka
.
Note
Whatever approach you take, data files in these wheels are not handled by Nuitka at all, but by setuptools. You can, however, use the data file embedding of Nuitka commercial. In that case, you actually would embed the files inside the extension module itself, and not as a file in the wheel.
Use Case 6 - Multidist
If you have multiple programs, that each should be executable, in the past you had to compile multiple times, and deploy all of these. With standalone mode, this, of course, meant that you were fairly wasteful, as sharing the folders could be done, but wasn't really supported by Nuitka.
Enter Multidist
. There is an option --main
that replaces or adds
to the positional argument given. And it can be given multiple times.
When given multiple times, Nuitka will create a binary that contains the
code of all the programs given, but sharing modules used in them. They
therefore do not have to be distributed multiple times.
Let's call the basename of the main path, and entry point. The names of
these must, of course, be different. Then the created binary can execute
either entry point, and will react to what sys.argv[0]
appears to
it. So if executed in the right way (with something like subprocess
or OS API you can control this name), or by renaming or copying the
binary, or symlinking to it, you can then achieve the miracle.
This allows to combine very different programs into one.
Note
This feature is still experimental. Use with care and report your findings should you encounter anything that is undesirable behavior
This mode works with standalone, onefile, and mere acceleration. It does not work with module mode.
Tweaks
Icons
For good looks, you may specify icons. On Windows, you can provide an icon file, a template executable, or a PNG file. All of these will work and may even be combined:
# These create binaries with icons on Windows
python -m nuitka --onefile --windows-icon-from-ico=your-icon.png program.py
python -m nuitka --onefile --windows-icon-from-ico=your-icon.ico program.py
python -m nuitka --onefile --windows-icon-template-exe=your-icon.ico program.py
# These create application bundles with icons on macOS
python -m nuitka --macos-create-app-bundle --macos-app-icon=your-icon.png program.py
python -m nuitka --macos-create-app-bundle --macos-app-icon=your-icon.icns program.py
Note
With Nuitka, you do not have to create platform-specific icons, but instead it will convert e.g. PNG, but also other formats on the fly during the build.
MacOS Entitlements
Entitlements for an macOS application bundle can be added with the
option, --macos-app-protected-resource
, all values are listed on
this page from Apple
An example value would be
--macos-app-protected-resource=NSMicrophoneUsageDescription:Microphone
access
for requesting access to a Microphone. After the colon, the
descriptive text is to be given.
Note
Beware that in the likely case of using spaces in the description part, you need to quote it for your shell to get through to Nuitka and not be interpreted as Nuitka arguments.
Console Window
On Windows, the console is opened by programs unless you say so. Nuitka
defaults to this, effectively being only good for terminal programs, or
programs where the output is requested to be seen. There is a difference
in pythonw.exe
and python.exe
along those lines. This is
replicated in Nuitka with the option --disable-console
. Nuitka
recommends you to consider this in case you are using PySide6
e.g.
and other GUI packages, e.g. wx
, but it leaves the decision up to
you. In case, you know your program is console application, just using
--enable-console
which will get rid of these kinds of outputs from
Nuitka.
Note
The pythonw.exe
is never good to be used with Nuitka, as you
cannot see its output.
Splash screen
Splash screens are useful when program startup is slow. Onefile startup itself is not slow, but your program may be, and you cannot really know how fast the computer used will be, so it might be a good idea to have them. Luckily, with Nuitka, they are easy to add for Windows.
For the splash screen, you need to specify it as a PNG file, and then make sure to disable the splash screen when your program is ready, e.g. has completed the imports, prepared the window, connected to the database, and wants the splash screen to go away.
from https://github.com/Nuitka/Nuitka
No comments:
Post a Comment