Total Pageviews

Friday, 19 May 2023

CogVideo

 Text-to-video generation. The repo for ICLR2023 paper "CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers".

This is the official repo for the paper: CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers.

News! The demo for CogVideo is available!

It's also integrated into Huggingface Spaces 🤗 using Gradio. Try out the Web Demo Hugging Face Spaces

News! The code and model for text-to-video generation is now available! Currently we only supports simplified Chinese input.

@article{hong2022cogvideo,
  title={CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers},
  author={Hong, Wenyi and Ding, Ming and Zheng, Wendi and Liu, Xinghan and Tang, Jie},
  journal={arXiv preprint arXiv:2205.15868},
  year={2022}
}

Web Demo

The demo for CogVideo is at https://models.aminer.cn/cogvideo/, where you can get hands-on practice on text-to-video generation. The original input is in Chinese.

Generated Samples

Video samples generated by CogVideo. The actual text inputs are in Chinese. Each sample is a 4-second clip of 32 frames, and here we sample 9 frames uniformly for display purposes.

Intro images

More samples

CogVideo is able to generate relatively high-frame-rate videos. A 4-second clip of 32 frames is shown below.

High-frame-rate sample

Getting Started

Setup

  • Hardware: Linux servers with Nvidia A100s are recommended, but it is also okay to run the pretrained models with smaller --max-inference-batch-size and --batch-size or training smaller models on less powerful GPUs.
  • Environment: install dependencies via pip install -r requirements.txt.
  • LocalAttention: Make sure you have CUDA installed and compile the local attention kernel.

pip install git+https://github.com/Sleepychord/Image-Local-Attention

Download

Our code will automatically download or detect the models into the path defined by environment variable SAT_HOME. You can also manually download CogVideo-Stage1 , CogVideo-Stage2 and CogView2-dsr place them under SAT_HOME (with folders named cogvideo-stage1 , cogvideo-stage2 and cogview2-dsr)

Text-to-Video Generation

./script/inference_cogvideo_pipeline.sh

Arguments useful in inference are mainly:

  • --input-source [path or "interactive"]. The path of the input file with one query per line. A CLI would be launched when using "interactive".
  • --output-path [path]. The folder containing the results.
  • --batch-size [int]. The number of samples will be generated per query.
  • --max-inference-batch-size [int]. Maximum batch size per forward. Reduce it if OOM.
  • --stage1-max-inference-batch-size [int] Maximum batch size per forward in Stage 1. Reduce it if OOM.
  • --both-stages. Run both stage1 and stage2 sequentially.
  • --use-guidance-stage1 Use classifier-free guidance in stage1, which is strongly suggested to get better results.

You'd better specify an environment variable SAT_HOME to specify the path to store the downloaded model.

Currently only Chinese input is supported.

from https://github.com/THUDM/CogVideo

 

 

 

No comments:

Post a Comment