环境: CentOS 6.4
由于我的CentOS服务器上没有Nvidia的显卡,不过 caffe 是可以在CPU模式下进行train和predict的,因此我尝试了在没有GPU的情况下把caffe跑起来。
主要参考官网的文档,Installation。
安装 Caffe 前需要安装以下库:
Prerequisites
- CUDA (5.0 or 5.5)
- Boost
- MKL (but see the boost-eigen branch for a boost/Eigen3 port)
- OpenCV
- glog, gflags, protobuf, leveldb, snappy, hdf5
- For the Python wrapper: python, numpy (>= 1.7 preferred), and boost_python
- For the Matlab wrapper: Matlab with mex
##1. 安装CUDA
wget http://developer.download.nvidia.com/compute/cuda/repos/rhel6/x86_64/cuda-repo-rhel6-5.5-0.x86_64.rpm
sudo rpm -Uvh libgcc-4.4.7-4.el6.x86_64.rpm
yum search cuda
sudo yum install cuda
或者
wget http://developer.download.nvidia.com/compute/cuda/5_5/rel/installers/cuda_5.5.22_linux_64.run
sudo ./cuda_5.5.22_linux_64.run
##2. 安装Boost
sudo yum install boost-devel
##3. 安装MKL
MKL是Intel的商业软件,性能很高,也卖的很贵。还好可以申请非商业版,去这里 https://registrationcenter.intel.com/RegCenter/NComForm.aspx?ProductID=1461&pass=yes 申请,申请成功之后你会得到一个序列号以及下载地址,下载完并解压, 执行
MKL是Intel的商业软件,性能很高,也卖的很贵。还好可以申请非商业版,去这里 https://registrationcenter.intel.com/RegCenter/NComForm.aspx?ProductID=1461&pass=yes 申请,申请成功之后你会得到一个序列号以及下载地址,下载完并解压, 执行
sudo ./install.sh
, 之后按提示安装就好了,这个安装特别简单。
##4. 安装OpenCV
sudo yum install opencv-devel
##5. 安装其他库
wget https://google-glog.googlecode.com/files/glog-0.3.3.tar.gz
tar zxf glog-0.3.3.tar.gz
cd glog-0.3.3
./configure
make
sudo make install
sudo yum install gflags-devel protobuf-devel leveldb-devel snappy-devel hdf5-devel
##6. 配置OpenCV环境
Caffe作者默认你已经配置好了OpenCV环境,文档里没有说这一步。好在有人已经写好了配置OpenCV的脚本,https://github.com/jayrambhia/Install-OpenCV ,直接拿来用。
Caffe作者默认你已经配置好了OpenCV环境,文档里没有说这一步。好在有人已经写好了配置OpenCV的脚本,https://github.com/jayrambhia/Install-OpenCV ,直接拿来用。
git clone https://github.com/jayrambhia/Install-OpenCV
cd Install-OpenCV/RedHat
sudo ./opencv_latest.sh
如果脚本运行失败,则详细阅读
RetHat/opencv_install.sh
的代码,然后手工敲入命令进行安装。mkdir OpenCV
cd OpenCV
wget -O opencv-2.4.7.tar.gz http://sourceforge.net/projects/opencvlibrary/files/opencv-unix/2.4.7/opencv-2.4.7.tar.gz/download
tar -zxf opencv-2.4.7.tar.gz
cd opencv-2.4.7
sed -i '/string(MD5/d' cmake/cl2cpp.cmake
mkdir build
cd build
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local ..
make -j 4
sudo make install
sudo sh -c 'echo "/usr/local/lib" > /etc/ld.so.conf.d/opencv.conf'
sudo ldconfig
##7. 编译
cp Makefile.config.example Makefile.config
make all
##8. 运行MNIST例子
主要参考官网的 Training MNIST with Caffe
主要参考官网的 Training MNIST with Caffe
###8.1 下载数据集
cd $CAFFE_ROOT/data/mnist
./get_mnist.sh
cd $CAFFE_ROOT/examples/lenet
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
./create_mnist.sh
运行完上述命令后,应该会得到两个数据集,
mnist-train-leveldb/
, 和 mnist-test-leveldb/
.
最终的model,
###8.2 切换到CPU模式
由于服务器没有安装显卡,只能使用CPU训练。切换到CPU模式非常简单,只需要在
由于服务器没有安装显卡,只能使用CPU训练。切换到CPU模式非常简单,只需要在
lenet_solver.prototxt
中修改一行:# solver mode: 0 for CPU and 1 for GP
solver_mode: 0
###8.3 开始训练
./train_lenet.sh
经过一段时间运行,训练完成!最终的model,会存为一个二进制的protobuf文件,
lenet_iter_10000
.
##参考资料
注意, CUDA 5.5 不支持 Visual Studio 2013,参考 CUDA 5.5 release notes
No comments:
Post a Comment